Global Dynamics of an HIV Infection Model with Two Classes of Target Cells and Distributed Delays

نویسندگان

  • A. M. Elaiw
  • Cengiz Çinar
چکیده

We investigate the global dynamics of an HIV infection model with two classes of target cells and multiple distributed intracellular delays. The model is a 5-dimensional nonlinear delay ODEs that describes the interaction of the HIV with two classes of target cells, CD4 T cells and macrophages. The incidence rate of infection is given by saturation functional response. The model has two types of distributed time delays describing time needed for infection of target cell and virus replication. This model can be seen as a generalization of several models given in the literature describing the interaction of the HIV with one class of target cells, CD4 T cells. Lyapunov functionals are constructed to establish the global asymptotic stability of the uninfected and infected steady states of the model. We have proven that if the basic reproduction number R0 is less than unity then the uninfected steady state is globally asymptotically stable, and if R0 > 1 then the infected steady state exists and it is globally asymptotically stable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Stability of HIV Infection of CD4+ T Cells and Macrophages with CTL Immune Response and Distributed Delays

We study the global stability of a human immunodeficiency virus (HIV) infection model with Cytotoxic T Lymphocytes (CTL) immune response. The model describes the interaction of the HIV with two classes of target cells, CD4(+) T cells and macrophages. Two types of distributed time delays are incorporated into the model to describe the time needed for infection of target cell and virus replicatio...

متن کامل

Stability and Numerical Analysis of Malaria- mTB- HIV/AIDS Co-infection (TECHNICAL NOTE)

In this paper, we develop a mathematical model to examine the transmission dynamics of curable malaria, curable mTB and non-curable HIV/AIDS and their co-infection. The size of population has been taken as varying due to the emigration of susceptible population. The total population is divided into five subclasses as susceptible, malaria infected, mTB infected, HIV infection and AIDS by assumin...

متن کامل

An epidemic model for the transmission dynamics of HIV/AIDS with different clinical stages

In this paper, a five–dimensional mathematical model is proposed for the transmission dynamics of HIV/AIDS within a population of varying size. In writing the model, we have divided the population under consideration into five sub classes of susceptible, infective, pre-AIDS, AIDS related complex and that of AIDS patients. The model has two non- negative equilibria namely, a disease free and the...

متن کامل

A nonstandard finite difference scheme for solving‎ ‎fractional-order model of HIV-1 infection of‎ ‎CD4^{+} t-cells

‎In this paper‎, ‎we introduce fractional-order into a model of HIV-1 infection of CD4^+ T--cells‎. ‎We study the effect of ‎the changing the average number of viral particles $N$ with different sets of initial conditions on the dynamics of‎ ‎the presented model‎. ‎ ‎The nonstandard finite difference (NSFD) scheme is implemented‎ ‎to study the dynamic behaviors in the fractional--order HIV-1‎ ‎...

متن کامل

Global Stability of an HIV-1 Infection Model with General Incidence Rate and Distributed Delays

In this work an HIV-1 infection model with nonlinear incidence rate and distributed intracellular delays and with humoral immunity is investigated. The disease transmission function is assumed to be governed by general incidence rate f(T, V)V. The intracellular delays describe the time between viral entry into a target cell and the production of new virus particles and the time between infectio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014